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ABSTRACT

Subseasonal to seasonal (S2S) climate forecasting has become a central component of climate services

aimed at improvingwatermanagement. In some cases, operational S2S climate predictions are translated into

inputs for follow-on analyses or models, whereas the S2S predictions on their ownmay provide for qualitative

situational awareness. At the spatial scales of water management, however, S2S climate forecasts often suffer

from systematic biases, and low skill and reliability. This study assesses the potential to improve S2S forecast

skill and salience for watershed applications through the use of postprocessing to harness skills in large-scale

fields from the global climate model forecast outputs. To this end, the components-based technique—partial

least squares regression (PLSR)—is used to improve the skill of biweekly temperature and precipitation

forecasts from the Climate Forecast System version 2 (CFSv2). The PLSR method forms predictor compo-

nents based on a cross-validated analysis of hindcasts from CFSv2 climate and land surface fields, and the

results are benchmarked against raw CFSv2 forecasts, remapped to intermediate-scale watershed areas. We

find that postprocessing affords marginal to moderate gains in skill in many watersheds, raising climate

forecast skill above a usability threshold over the four seasons analyzed. In other locations, however, post-

processing fails to improve skill, particularly for extreme events, and can lead to unreliably narrow forecast

ranges. This work presents evidence that the statistical postprocessing of climate forecast system outputs has

potential to improve forecast skill, but thatmore thorough study of alternative approaches and predictorsmay

be needed to achieve comprehensively positive outcomes.

1. Introduction and background

Subseasonal to seasonal (S2S) climate forecast skill

has received greater attention in recent years due to the

potential applications of climate forecasts. Many sectors

including public health, disaster preparedness, energy,

agriculture, and water management would benefit by

applying S2S climate forecasts to their specific needs

(White et al. 2017). In the public health sector, S2S

forecasts could help predict the probability of floods and

droughts at longer lead times, which in turn could inform

disaster responses and warnings for mitigating such ex-

treme events. Skillful forecasts would help the energy

sector anticipate energy demands and could inform the

production of renewable energy sources, such as wind or

solar power. Seasonal climate outlooks are presently used

in the agricultural sector to make operational decisions

on crop management, planting, irrigation scheduling,

fertilizer application, and commodity pricing.

In the water management sector, skillful forecasts of

precipitation and temperature could improve the skills
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of streamflow forecasts informing projections of runoff

volume, water levels in rivers and reservoirs, and water

supply availability (Raff et al. 2013). Academic studies

have indicated that water managers are reluctant to use

climate forecasts due to perceived poor forecast skill,

inadequate or misaligned temporal or spatial scale, in-

stitutional hurdles such as mandated decision workflows,

organizational restraints, and risk aversion (Callahan et al.

1999; Kirchhoff et al. 2013; Rayner et al. 2005; White

et al. 2017). Baker et al. (2019) sought to address some

of these hurdles by translating and bias-correcting

S2S climate forecasts to a watershed spatial unit—U.S.

Geological Survey (USGS) hydrologic unit code 4 (HUC4)

watersheds—for biweekly, monthly, and seasonal predic-

tion periods. This aggregated forecast product was made

available in real time on the S2S Climate Outlooks for

Watersheds web-based tool (http://hydro.rap.ucar.edu/s2s/).

Baker et al. (2019) found that bias-correction to watershed

climatologies improved forecast relevance through tai-

loring forecast outputs, and reduced bias, but did not

improve S2S forecast performance for skill metrics other

than bias (e.g., for correlation).

The increased demand from various sectors for S2S

climate forecast informationmotivates an exploration of

the potential for multivariate postprocessing methods to

increase the skill of forecasts. The S2S time scale (from

2 weeks to 2 months) is a challenging period for climate

forecast skill because it falls between shorter and longer,

more aggregated time scales whenweather forecasts and

seasonal climate projections, respectively, exhibit skill

(Vitart et al. 2017). In weather forecasting, skill comes

from initial atmospheric and land surface conditions,

which tend to have less influence with increasing lead

time. Seasonal prediction is influenced by land and

ocean conditions such as sea surface temperature (SST)

and to a lesser extent soil moisture, and their influence

via large-scale ocean–climate teleconnection patterns

such as El Niño–Southern Oscillation (ENSO), North

Atlantic Oscillation (NAO), Pacific decadal oscillation

(PDO), and Pacific North American (PNA) pattern.

The S2S time scale falls in the gap between when initial

conditions dominate forecast skill and when coupled

climate system dynamics provide sources of atmospheric

predictability.

Many studies have investigated the predictability of

this time scale, with an increasing recent emphasis on the

weeks 3–4 period. DelSole et al. (2017) explored the

predictability of raw Climate Forecast System version 2

(CFSv2) precipitation and temperature forecasts during

January and July, and found that winter exhibited more

predictability than summer and that predictability was

linked to large-scale climate features such as ENSO and

the Madden–Julian oscillation (MJO). Their analyses

suggested that precipitation and temperature alone ex-

hibit some predictability, but other climate and land

surface fields (e.g., SST) could be used to improve week

3–4 forecasts.

There are several strategies to improve S2S climate

prediction skill. One approach to improving climate

forecast skill is through enhancements to the coupled

dynamical climate or Earth system models used to

generate climate forecasts. This effort is steadily pur-

sued by the centers that maintain and develop these

large-scale dynamical models. For instance, NOAA’s

operational dynamical model, CFSv2 improved upon

its predecessor, CFSv1, through upgrades to nearly all

aspects of the prediction system, including data as-

similation systems, the model physics and parame-

terizations, dynamical core, resolution and coupling

strategies, which resulted in major improvements to

forecast skill (Saha et al. 2014).

A second strategy to improve climate forecast skill lies

in the statistical postprocessing of dynamical forecast

model outputs. Postprocessing is applied through sta-

tistically translating raw, large-scale dynamical model

outputs to a regional scale that is useful for local appli-

cations, in this case regional water managers (Sansom

et al. 2016; Li et al. 2017). Raw dynamical model output

typically requires postprocessing or downscaling (a form

of postprocessing) to be used in follow-on applications

due to systematic biases, unreliable ensemble spread,

and/or forecasts’ lack of skill. Common statistical post-

processing methods include bias correction, and differ-

ent forms of regression that uses large-scale circulation

features as predictors. In weather prediction, techniques

such as model output statistics (Glahn and Lowry 1972)

that regress atmospheric predictors from numerical

weather prediction (NWP) onto surface meteorological

variables have been common for decades. Recently,

Hamill and Whitaker (2006) popularized hindcast or

reforecast datasets by showing analog techniques ap-

plied to weather tomedium range climate precipitation

can significantly raise the skill of NWP predictions. In

the climate forecast context, Tian et al. (2014) found

that a locally weighted polynomial regression method

showed higher skill than direct spatial disaggregation

and bias correction for North American Multi-Model

Ensemble (NMME) precipitation and temperature

forecasts for Alabama, Georgia, and Florida. Zhao

et al. (2017) corroborates this view in showing that

bias correction methods alone are insufficient for

postprocessing seasonal forecasts because they merely

apply a climatological correction without considering

forecast skill. The authors demonstrate that forecast

calibration techniques (e.g., the Bayesian joint proba-

bility method) are needed to account for skill in the
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course of adjusting both forecast mean and forecast

spread.

Some statistical postprocessing techniques employ

additional information from large-scale climate fields

to improve dynamical model forecasts. Many studies

have focused on improving seasonal precipitation and

temperature forecasts (DelSole and Banerjee 2017;

Madadgar et al. 2016; Schepen et al. 2014; Ward and

Folland 1991; Xing et al. 2016). Methods include analog-

year models, regression methods, and empirical or-

thogonal function (EOF) mode techniques. Madadgar

et al. (2016) explored forecasting seasonal precipitation

over the southwestern United States using a hybrid

statistical–dynamical approach. The statistical approach

used an analog-year technique based on copula func-

tions informed by teleconnections such as the PDO,

multivariate ENSO index, and Atlantic multidecadal

oscillation, and generated weighted NMME model com-

binations that showed improvements over the raw

NMME ensemble mean seasonal precipitation.

Other studies have found value in using model-

predicted SSTs instead of empirical climate indices or

atmospheric fields. Xing et al. (2016) used partial least

squares regression (PLSR; Wold 1966) to predict the

principal component (PC) and consequently, forecast

summer rainfall over China using winter SSTs and

temperature over land. They found that the summer

rainfall prediction skill of the PLSR-based method

at 4-month lead was significantly higher compared to

1-month lead dynamicalmodel prediction. Another study

byMcIntosh et al. (2005), explored using PLSR to predict

plant growth days using global SSTs and showed higher

skills compared to predictions of rainfall.

PLSR has been used in a wide variety of fields, from

early applications in economics (Wold 1966) to recent

applications in the physical sciences to predict stream-

flow (Abudu et al. 2010; Mendoza et al. 2017; Tootle

et al. 2007), teleconnections (Black et al. 2017), pre-

cipitation (Xing et al. 2016), and climate variability

(Smoliak et al. 2015). Many of these studies have used

climate fields to develop empirical forecasts of vari-

ables of interest. Black et al. (2017) employed PLSR

with predictor fields of outgoing longwave radiation

(OLR), 300-hPa geopotential height, and 50-hPa geo-

potential height to predict Northern Hemisphere tele-

connection patterns at leads of weeks 3–4. Tootle et al.

(2007) showed improvements to long lead streamflow

forecasts at gauges in the United States using PLSR with

previous spring and summer’s SSTs.

In this study, we assess whether a linear component-

based forecast postprocessing approach can lead to im-

provements in the skill of S2S forecasts. We apply the

aforementioned PLSR to postprocess subseasonal CFSv2

forecasts of weeks 2–3 and 3–4 surface precipitation and

temperature at watershed scales. Because tropical and

subtropical SSTs have long been identified as a primary

source of seasonal temperature and precipitation fore-

cast skill for the CONUSdomain (e.g., Quan et al. 2006),

we assess whether it is beneficial to incorporate the

conditioning influence of a widely used climate system

variable, SSTs, in the postprocessing approach. This

experiment is presented as a first cut assessment of

whether multivariate predictor approaches may out-

perform the postprocessing of a single predictor, such as

precipitation. We then further investigate whether ad-

ditional climate system variables beyond SSTs may be a

useful source of predictability in postprocessed predic-

tions tailored to specific watersheds.

This paper is organized as follows. The second section

describes the data used in the study and preliminary data

processing. In section 3, we provide a description of the

PLSR method and verification metrics. We then sum-

marize results for the forecast assessment with SST

conditioning, followed by findings for the predictability

associated with a broader range of climate system pre-

dictors. We conclude with a discussion of the potential

use and hurdles associated with postprocessing ap-

proaches in this context.

2. Data

a. Precipitation and temperature analysis at
watershed scales

The observational dataset used in this study is phase

2 of the near-real-time North American Land Data

Assimilation System (NLDAS-2; Xia et al. 2012).

NLDAS-2 is an analysis product generated in near–real

time that includes hourly precipitation and temperature.

The precipitation field is a temporal disaggregation of a

gauge-only analysis (from the NOAA/NCEP Climate

Prediction Center) of daily precipitation, which includes

an orographic adjustment using the 1/88 PRISM clima-

tology. The NLDAS-2 temperature fields are derived

from the NorthAmericanRegional Reanalysis (NARR).

NLDAS-2 data are available from 1979 to present at

an hourly temporal resolution at a 1/88 grid spacing.

Precipitation and temperature fields from NLDAS-2 are

spatially and temporally aggregated to biweekly periods

at a USGS HUC4 watershed scale over the CONUS

domain (Baker et al. 2019). NLDAS-2 fields are trans-

lated to a 0.58 grid and temporally averaged to a daily

time step. The fields are then areally aggregated to 202

USGS HUC4 watersheds through spatially conservative

remapping, and temporally averaged to biweekly periods

(weeks 2–3 and 3–4 lead times).
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b. CFSv2 climate and surface variable forecasts

The dynamical climate forecasts used in this study are

from the operational fully coupled atmosphere–ocean–

land model CFSv2 (Saha et al. 2014). CFSv2 forecasts a

variety of climate and land surface variables, including

temperature and precipitation rate (hereafter referred

to as precipitation), on a 6-h time step with a ;100-km

grid resolution. Reforecasts are available from 1999 to

2010 with four initializations each day at synoptic times

0000, 0006, 0012, and 0018 UTC. Reforecast lead times

extend to 45 days or to 9 months depending on the

forecast initialization time. The CFSv2 precipitation and

temperature reforecasts are spatially and temporally

aggregated in the same fashion as the NLDAS-2 fields,

yielding CFSv2-based HUC4 watershed forecasts over

the CONUS domain. We pooled forecasts over a 2-day

period (creating 8-member ensembles) to smooth vari-

ability in forecast ensemble means from one day to the

next. These aggregated HUC4 watershed temperature

and precipitation reforecasts are referred to as raw

CFSv2 forecasts.

In the first part of this study, we used the predicted

CFSv2 SST field, and went further to assess whether

addition fields may represent a source of predictability.

These fields and the associated spatial extents (domain)

selected for use in this study are summarized in Table 1

and visualized in Fig. 1. The CFSv2 predictor fields were

spatially aggregated to a 28 grid resolution to reduce

computational processing time, and like the CFSv2

precipitation and temperature reforecasts, were then

aggregated to biweekly periods and pooled into 8-member

lagged ensemble means. The fields and their do-

mains were identified due to their linkages to North

American atmospheric circulation and surface climate,

and/or their use in prior postprocessing studies (e.g.,

Koster et al. 2017; Doblas-Reyes et al. 2013; Grantz et al.

2005). Scaife et al. (2014), for instance, found sources of

predictability for North American winters in large-scale

climate circulation patterns such as NAO, jet stream

winds, and sea level pressures.

3. Methods

a. Partial least squares regression

Statistical postprocessing can be achieved through a

wide range of techniques, and indeed, recent interest

in climate forecast postprocessing has delved increas-

ing into nonlinear machine learning approaches (e.g.,

Hwang et al. 2018). We used the linear PLSR ap-

proach alluded to earlier—a components-based regres-

sion method similar to principal component regression

(PCR) that combines features of principal component

analysis (PCA) and multiple linear regression (Abdi

2010). PLSR forms predictor components that are or-

dered to explain the maximum covariance of the pre-

dictors and a single-valued predictand, while principal

component analysis forms components that are ordered

to maximize only the explained variance of the predic-

tors. PLSR provides for dimension reduction and avoids

multicollinearity in analyses with large sets of cross-

correlated and/or dependent predictors, such as is com-

mon in gridded model fields.

The PLSR method is detailed in papers such as

Abdi (2010) and Smoliak et al. (2010), and is sum-

marized here. The predictors X (specified as a two-

dimensional matrix in which the rows define time records

and the columns define the spatial elements—the grid

cells of the CFSv2 predictor space) can be decomposed

through the following relationship:

X5ZPT with ZTZ5 I ,

where Z is the latent vectors or scores (sometimes re-

ferred to as partial least squares, or PLS, predictors).

The term P contains their loadings (weights in space),

and I is the identity vector. Similarly, the predictand Y

TABLE 1. CFSv2 predictor fields and spatial extents used in this study.

Predictor name Variable name Spatial extent

Sea surface temperature sst 208S–708N 3 1008E23608
Geopotential height (500 hPa) hgt 258–808N 3 100823408E
Specific humidity (2m) q2m 208S–708N 3 100823408E
Surface pressure prs 208S–308N 3 100823408E
Sea level pressure slp 208S–308N 3 100823408E
Precipitable water pwt 208S–708N 3 100823408E
Zonal winds (850 hPa) uwnd 08–808N 3 100823408E
Meridional winds (850 hPa) vwnd 08–808N 3 100823408E
Outgoing longwave radiation olr 208S–208N 3 100823408E
Surface temperature tmp 248–538N 3 235822938E
Surface precipitation rate prt 248–538N 3 235822938E
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(which in our application is a vector of the watershed

predictand, precipitation or temperature, for time rec-

ords matching those in X) can be estimated through the

relationship:

Ŷ5ZBCT ,

where Ŷ is the deterministic estimate of Y, B is the re-

gression weights in a diagonal matrix, and C is the

weights matrix of the predictand. This system of

equations does not have enough information to be

solved; additional conditions are required to solve for

the latent vectors Z. To find the latent vectors, two

sets of weights, w and c, are found that form linear

combinations of X and Y that maximize the covari-

ance and find structures that explain the most variance

in the predictor field:

z5Xw and u5Yc ,

with the following constraints

wTW5 1, zTz5 1, and zTu5maximal.

This estimation is performed iteratively to obtain all

of the necessary vectors. Once the first latent vector Z is

solved such that zTu is maximized, it is subtracted from

X andY through an ordinary least squares regression to

form a matrix composed of residuals. The processes are

then reiterated to solve for the resulting predictor from

this residual matrix. This process can be done using al-

gorithms such as the SIMPLS (de Jong 1993) and ensures

that the latent vectors are mutually orthogonal com-

ponents with respect to the predictors and predictand.

Further details on how specifically PLSR was applied in

this application is given in the appendix.

Smoliak et al. (2015) investigated PLSR performance

related to Northern Hemisphere air temperature vari-

ability. The predictand types tested were 1) point-wise

where the predictand is a time series for a single grid

point or an area average, 2) PC-wise where the target is a

PC time series, and 3) field-wise where the predictand is

an entire field. They found that point-wise and PC-wise

PLSR methods explained more variance in the pre-

dictand with a lower number of predictor vectors,

as expected, and that all performed slightly better

than PCR. In this analysis, we apply the point-wise

predictand approach where we predict individual

watershed-averaged NLDAS-2 precipitation and tem-

perature at biweekly periods of 2–3 and 3–4 weeks. Both

the predictors and predictands are standardized with a

mean of 0 and a standard deviation of 1 to remove

emphasis on predictor regions with relatively large

amplitudes of variation. Standardization alone does

not correct distributional issues (e.g., skewness, inter-

mittency) that would undermine the use of a predictor

such as precipitation in regression-based methods. As

noted earlier, the use of biweekly aggregations im-

proves intermittency and to some extent improves

normality, but the application of normality transforms

would almost certainly improve upon the results pre-

sented here.

A separate PLSR analysis is performed for each wa-

tershed with one model variable for each month. PLSR

models are trained using data from the adjacent months

meaning each year of data has 3months of data available

to train the model. For example, the PLSR model for a

FIG. 1. Spatial extent of CFSv2 predictors corresponding to variables in Table 1.
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forecast of 1 January for the week 2–3 predictand would

be trained using CFSv2 predictors and NLDAS-2 ana-

lyses from all forecast–analysis pairs in December,

January, and February. The PLSR models are com-

pletely cross validated by separating the 12-yr reforecast

period into training and verification periods—in this

case, by dropping the year in which forecasts are verified

from the dataset training period. The nominal training

and test sample sizes are approximately 1001 (11 years3
91 days or 3 months) and 31, respectively, although the

use of lagged ensembles reduces the effective sample

sizes due to serial autocorrelation (dependence). The

analysis utilizes the R statistical software package ‘‘pls’’

(Mevik andWehrens 2019) to perform PLSR. Although

the pls function does offer train and predict modes, we

further separate the training and test data before ap-

plying the pls function as an additional measure to

enforce that test period data cannot influence the

component training, and to allow for analyses on cross-

validation samples not possible through using the in-

ternal pls cross-validation function.

b. Verification metrics

Verification metrics are applied to compare the per-

formance of ensemble-mean precipitation and temper-

ature forecasts from PLSR-based postprocessing with

raw watershed-scale forecasts from CFSv2. The main

verification metric presented in this paper is the anom-

aly correlation (ACC), which is commonly used in the

climate prediction community to measure the associa-

tion of forecast and observed anomalies (avoiding the

boost in correlation arising from a correspondence of

space–time forecast and observed climatologies). A

score of 1 indicates a perfect forecast and a score of 0 or

below represents a forecast that is not skillful. Other

deterministic forecast verification metrics calculated for

this study include mean absolute error (MAE) and bias

(not shown). The metrics are calculated separately for all

forecasts in each 3-month seasonal basis to show seasonal

variability in forecast performance. To translate forecasts

and observations into anomalies, the precipitation and

temperature climatologies for each watershed, lead, and

the day of year were estimated based on averaging across

a 15-day window (67 days from forecast date).

c. Additional CFSv2 predictor analysis

The primary analyses of this paper assess whether

a multivariate postprocessing approach that combines

SSTs and primary forecast variables, precipitation and

temperature, can be used to boost the skill of S2S fore-

casts at watershed scales. The recognized influence of

SSTs (even as indexed by tropical Pacific regions such as

Niño-3.4) onNorth American climate is a key motivation

for attempting to incorporate SST information (Wang

et al. 2013; Scaife et al. 2014; Barnston et al. 2005). This

is a relatively conservative postprocessing strategy, given

the ability of postprocessing schemes to mine an exten-

sive suite of climate forecast model variables. In the

practice of S2S empirical prediction, however, forecasters

and stakeholders note discomfort with forecast models

that are overwhelmingly data driven—that is, in which se-

lected predictors are allowed to vary significantly in space

and time depending on prediction model fitting—due to

the risk that predictor selection is spuriously driven by

training sample noise, which is particularly a challenge

for S2S forecast contexts. Moreover, if predictors vary

from prediction to prediction (e.g., from watershed to

watershed, and from initialization date to initialization

date), it can be difficult to attribute changes in prediction

outcomes to the evolution of individual predictor values,

which can be an important narrative for stakeholders.

On the other hand, it is likely that climate dynamics do

vary in space and by season, such that an optimal pre-

dictor set will also vary. Aside from predictor variables,

another choice that must be made is the number of

components or predictors to include. There exist quanti-

tative metrics for predictor adoption and component ac-

ceptance [e.g., the Bayesian information criterion (BIC);

Schwarz 1978] or regularization approaches to reduce the

risk of overfitting [e.g., least absolute shrinkage and se-

lection operator (LASSO); Santosa and Symes 1986]. To

lessen the risk of overfitting, and based on exploratory

data analysis suggesting minimal useful variance ex-

plained after the second component, we limit the number

of components applied in our forecast models to two. As

will be shown, even using only two components appears

to lead to overfitting for many watersheds.

After assessing the SST-conditioned PLSR models,

we explore whether expanding the consideration of

potential CFSv2 circulation-related predictors could

further improve postprocessing forecast skill. This ex-

ploration is not exhaustive, as the goal of the study is not

to optimize an empirical postprocessing model but

rather to present a general outlook for the potential

enhancement of raw climate model forecast outputs at

watershed scales through the addition of circulation-

scale predictors in a postprocessing framework. The

expanded focus includes additional CFSv2 circulation

variables (see Table 1), and we test each predictor in-

dividually, performing cross-validated PLSR for each

predictand, watershed, lead time, and forecast month.

4. Results

This section first presents a single watershed example

to illustrate the approach, before reviewing outcomes
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with postprocessing augmented by SSTs for the entire

CONUS domain. We then show findings for the ex-

ploration of additional predictability in other CFSv2

forecast fields.

a. Individual watershed example

The results of postprocessing varied across water-

sheds, with some watersheds performing well with pre-

dictor components based on SST and precipitation or

temperature, while other watersheds showed either

negligible benefits or even degradation of skill. Before

turning to CONUS-wide results, we illustrate the ap-

proach for a single watershed using scatterplots of ob-

servations versus the CFSv2 raw and postprocessed

forecasts, and maps of the PLSR loadings for each pre-

dictor and component. The PLSR loadings provide in-

sight into the regions of the predictor fields that explain

the highest covariance between the predictors and the

predictand, which in turn is informative about the cli-

mate dynamics associated with the PLSR predictors.

The example shows awatershed inwhich postprocessing

was successful in improving the skill of temperature

forecasts. Figures 2a and 2b show the raw CFSv2 and

postprocessed forecasts, respectively, for June weeks

3–4 temperature in the Neosho and Verdigris watershed

in southeastern Kansas. The raw CFSv2 forecast does

not differentiate between hot and cold temperature

events with an ACC of 0.03 and MAE of 1.48C over the

biweekly period. The PLSR-based forecast reduces the

forecast spread considerably, and the forecast distinguishes

warm from cold outcomes much better than the raw

forecasts. The ACC of the postprocessed forecasts im-

proves to 0.54 and the MAE to 0.958C. The loadings for
the PLSR model are shown in Fig. 3 for SST and tem-

perature. The first component SST loading patterns has

strong positive loadings in the northern regions of the

Pacific and Atlantic oceans, suggesting that warm

temperature anomalies in Kansas are associated gen-

erally with warm midlatitude Pacific and Atlantic

Ocean temperatures. The first predictor component

temperature field also has positive loadings over most

of the North American domain, which intuitively co-

varies positively with Kansas temperature. The second

component for both predictors has lower loading

magnitudes.

b. Seasonal CONUS domain analysis

The postprocessing approach using SSTs was applied

to all CONUS HUC4 watersheds for biweekly periods

of weeks 2–3 and 3–4. The PLSR model predictors are

concurrent gridded SST and either precipitation or tem-

perature, depending which is the predictand. Verification

metrics were calculated for raw ensemble mean CFSv2

forecast and PLSR forecast on a seasonal basis for

December–February (DJF), March–May (MAM), June–

August (JJA), and September–November (SON).

In considering the following skill plots, which com-

pare correlations of raw and postprocessed forecasts,

we assessed whether changes in ACC were statisti-

cally significant. To calculate significance thresholds,

FIG. 2. June weeks 3–4 temperature forecasts are plotted vs NLDAS-2 observations for the Neosho and Verdigris

watershed in southeastern Kansas. (a) The raw CFSv2 forecast and (b) the PLSR forecast.
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we estimate an effective sample size that is significantly

smaller than the number of forecasts evaluated, due

to autocorrelation in the observed predictands (which

overlap from forecast date to forecast date). There are

;1080 forecasts in each seasonal sample (12 years 3
90 days). Given the noise of the forecasts (there is neg-

ligible autocorrelation from week to week), we treat

each new week of forecasts as being effectively inde-

pendent, reducing the sample size to 144, or one forecast

per week of the seasonal period for 12 years. To estimate

the significance of the difference, we apply the Fisher

transformation to the correlation statistics and use n 2
3 degrees of freedom to estimate standard error for a

Student t test (due to sample size limitations). The ef-

fective sample sizemeans increases inACCmust exceed

0.15 to be statistically significant at 90% confidence level

(versus 0.055 if the sample size included all ;1080

forecasts) and must exceed 0.10 at an 80% confidence

level. Recognizing recent arguments against significance

testing (e.g., Amrhein et al. 2019), we offer these

thresholds as guidance for the user to interpret the re-

sults, but nonetheless show all values in the figures

rather than obscuring resulting values falling below

an author-selected threshold. Aside from the absolute

values of the skill increases or decreases, their spatial

patterns and/or coherence can also provide support for

accepting or rejecting the utility of the postprocessing

shown here.

1) TEMPERATURE RESULTS

The raw CFSv2 ACC for weeks 3–4 temperature

forecasts (Fig. 4, left column) varies seasonally and

spatially over the CONUS domain. The highest raw skill

occurs during DJF in the eastern half of the United

States, in the northern plains in spring and in eastern

Texas and Louisiana in summer, while the western

United States does not generally exhibit much skill. The

lowest raw CFSv2 skill for weeks 3–4 temperature

forecast is during MAM in the Southwest and Rocky

Mountains regions, and JJA and SON show mostly

lower forecast skill over the entire domain. The center

column in Fig. 4 shows the skill (ACC) from the best

model (either rawCFSv2 or PLSR). Postprocessing here

increases the number of watersheds showing forecast

skill values of ACC above 0.3, a potential usability

threshold used by forecast groups such the NCEP

Climate Prediction Center (O’Lenic et al. 2008). In

general, however, weeks 3–4 temperature forecast skill

from CFSv2, with or without postprocessing, is not high

for large regions of CONUS, at watershed scales.

Figure 4 (right column) shows the difference between

the postprocessed and raw forecasts. The largest in-

creases in skill from postprocessing occur during MAM

and SON in watersheds of the Intermountain West, in

the upper Mississippi during summer, and during SON

along the Southeast coast near Florida. These instances,

and their regional coherence, are encouraging, yet for

most of the watersheds, in all seasons, the postprocess-

ing either has no benefit or degrades raw skill. This

outcome is often a result of overfitting predictors, which

is a common problem when attempting to fit empirical

predictive models to small datasets, and particularly

those with noisy or weak predictors, as in the S2S con-

text. The weeks 2–3 temperature forecast skill assess-

ment shown in Fig. 5 revealed this outcome for the raw

CFSv2 forecasts as well, performing equal to or better

FIG. 3. Mean cross-validated loadings for PLSRmodel of June week 3–4 temperature forecast for the Neosho and Verdigris watershed.

The predictors used in the PLSR model are SST and temperature, which are represented as rows. The two components are shown as

columns. The star represents the location of the watershed in the domain.
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than postprocessed PLSR results in most watersheds.

The weeks 2–3 raw CFSv2 temperature skill is signifi-

cantly higher (averaging to an ACC of 0.45) over the

CONUS domain for all seasons, making it more chal-

lenging to improve upon. We note, however, that for all

the predictands evaluated here, the statistical post-

processing substantially reduces climatological forecast

bias, as it trains to the target observational dataset.

2) PRECIPITATION RESULTS

The seasonal forecast skill results for the weeks 2–3

precipitation forecasts (Fig. 6) show that the raw CFSv2

forecasts have nonnegligible skill in watersheds in the

western United States and in the Great Lakes region

during DJF. Lower skill values are shown in Texas,

Louisiana, Alabama, and Kansas during MAM. During

JJA, many watersheds show lower skill except a few wa-

tersheds in southern Idaho, northern Utah, and Nevada,

which show areas with skill above 0.35. The increase in

ACCwith postprocessing (Fig. 6, right column) varies with

season and watershed location. All seasons have a number

of watersheds (but not a majority) that benefit from

postprocessing. Watersheds in the north-central and

northeastern United States show increases in skill dur-

ing certain seasons. In some of these watersheds, the

ACC increase is high enough to provide usable skill with

the postprocessing PLSR model. There are also regions

where the postprocessed precipitation forecasts lose

skill relative to the raw CFSv2, for example, DJF in the

western and southeastern United States. This could be

especially true since the raw CFSv2 precipitation is not

skillful over large portions of the United States. The

spatial pattern of watersheds that show improved skill

after postprocessing is notably less coherent for weeks

2–3 precipitation than for weeks 2–3 temperature

(Fig. 4). This could indicate that the predictors in com-

ponent form, such as precipitation, may be poor pre-

dictors for modeling precipitation, which is consistent

with the fact that the raw watershed precipitation fore-

cast performs poorly.

For weeks 3–4 precipitation forecasts (Fig. 7), the raw

CFSv2 forecast ACC is very low with little to no skill for

FIG. 4. Forecast results for 3–4 week temperature forecasts shown on a seasonal basis. (left) The raw CFSv2 forecast ACC; (center) the

best forecast (either with PLSR-based postprocessing or the raw CFSv2) ACC; and (right) the difference in ACC between postprocessed

and CFSv2 raw forecasts. Improvements in ACC (right column) that are greater than 0.10 and 0.15 are significant at 80% and 90%

confidence levels, respectively (for details refer to the text).
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the weeks 3–4 precipitation forecasts for most water-

sheds and seasons. The raw CFSv2 forecasts are lowest

during MAM and JJA over the CONUS domain. The

postprocessed ACC values are higher than the raw

CFSv2 forecast for many watersheds and seasons, es-

pecially during JJA, even exceeding 0.3 in some water-

sheds. Specifically, a few watersheds in Texas, New

Mexico, and North Dakota during DJF show increases

in ACC that propel the skill above the 0.3 threshold, as

well as a few watersheds in the Northwest in spring. Yet

for most watersheds, evenmoderate to large increases in

skill, due to negligible raw skill, do not yield what might

be considered skillful forecasts from a water manage-

ment perspective. It is encouraging that the skill in-

creases are more spatially contiguous, such as in the

Pacific Northwest in spring or the upper Mississippi and

Missouri River basins in summer, because it may suggest

that that synoptic-scale conditioning of the SSTs con-

tributes information to the forecasts.

c. Additional CFSv2 predictor analysis

Results thus far have shown that modest improve-

ments in S2S forecast skill for certain regions and

predictands may be possible through a relatively re-

strained multivariate postprocessing approach augment-

ing CFSv2 forecast components with SSTs, a primary

driver of S2S North American climate variability. Yet

this approach failed to provide extensive and consistent

improvements throughout the forecast domain, thus

we explore whether any of the additional predictors in

Table 1 could potentially support further improve-

ments. We train and cross validate a more varied set

of postprocessed forecasts, using PLSR to predict precip-

itation or temperature with alternative CFSv2 predictor

(Table 1), and we report forecasts for which any predictor

could improve skill relative to the raw CFSv2.

Figure 8 illustrates this predictor investigation using

the example of predicting weeks 2–3 precipitation for

July. The rawCFSv2 skill (Fig. 8a) can be comparedwith

the increases in the ACC skill metric using the highest

performing PLSR-based variable (Fig. 8b), which in-

cludes watersheds for which postprocessing reduced

skill relative to raw CFSv2 forecasts. We also show the

maximum skill from either raw CFSv2 or PLSR-based

forecasts with skill increases combined (Fig. 8c), and the

individual predictor that resulted in the highest ACC

FIG. 5. Forecast results for weeks 2–3 temperature forecasts shown on a seasonal basis. The format is the same as in Fig. 4.
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(Fig. 8d), for those watersheds in which the post-

processing outperformed the raw watershed scale

CFSv2 forecast.

In this July weeks 2–3 precipitation forecast example,

the raw CFSv2 forecast performed poorly over most of

the CONUS domain except in the Four Corners region

and areas to the south. Since the raw skill is low, there

is a potential for large improvements for many water-

sheds. The highest increases in skill are found over re-

gions with the lowest raw CFSv2 forecast skill, for

example in the Great Plains. Certain watersheds, espe-

cially those along the East Coast, do not have statistically

significant (by common rejection thresholds) differences

in skill between the raw CFSv2 and postprocessed fore-

casts, but the expanded use of predictors not surprisingly

yields a map with more extensive positive results than in

earlier figures. The predictors resulting in the highest skill

improvements were SST, precipitation, precipitable wa-

ter, and meridional and zonal winds (Fig. 8d).

Notably, the predictor with the highest impact on

forecast skill varies from watershed to watershed, with

limited regional consistency. Hypothesizing that multi-

ple predictors may perform better than the raw CFSv2

forecast and that skill differences between predictors are

driven to some extent by sample noise (despite the cross

validation), we identify the top three predictors for each

watershed (Fig. 9) for the July weeks 2–3 precipitation.

This allows us to assess whether certain predictors may

show more regional consistency in being a generally

strong predictor (providing skill above the raw forecasts),

than a top place ranking in a noisy field of predictors

might otherwise indicate. Watersheds are displayed in

color if the predictor ranks in the top three predictors

for a watershed based on the ACC. The color is solid if

the predictor provides higher ACC than the raw CFSv2

forecast, and transparent if not. For this example, the best

predictors are SST, followed by wind speeds (both me-

ridional and zonal), outgoing longwave radiation (OLR),

and temperature.

Exploratory data analysis of the type described above

was repeated for precipitation and temperature for all

lead times in January and July, confirming both the lack

of regional consistency for best-performing predictors,

as well as underscoring that for almost any watershed

of interest, there may be an optimal set of one or

more atmospheric predictors that can be harnessed in

FIG. 6. Forecast results for weeks 2–3 precipitation forecasts shown on a seasonal basis. The format is the same as in Fig. 4.
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postprocessing to augment the skill of raw CFSv2 fore-

cast output. In additional results obtained for this

study, but not reported here, we also found that sev-

eral other methodological choices (such as the num-

ber of components, the strategies used in training, and

the use of multiple predictors), could provide addi-

tional benefits in optimizing localized postprocessing

skill. For instance, we found that training PLSR

models on only the extreme quantiles of precipitation

events within a training sample could marginally in-

crease forecast skill.

5. Discussion and conclusions

The subseasonal forecast time period has received

increasing attention in both the climate forecast and

applications communities (U.S. Bureau of Reclamation

2019). Both national projects such as the NOAA S2S

Task Force (Mariotti et al. 2018) and international ef-

forts such as the S2S prediction project (Vitart et al.

2017; Vitart and Robertson 2018) are working to im-

prove forecast skill through enhancements of dynamical

models and though techniques such as improved data

assimilation, as well as through statistical postprocessing

of dynamical model output. Some of these studies have

used component based empirical regression methods to

predict seasonal rainfall, but none have detailed an ef-

fort to enhance subseasonal biweekly climate forecasts

from dynamical model forecasts by postprocessing or

have focused on watershed scale outcomes.

This study’s objective was to assess the potential of

postprocessing in this context. Experimental results

in postprocessing watershed-scale subseasonal climate

forecasts via the PLSR method confirms there are op-

portunities to improve forecast skill via this avenue.

Postprocessing of watershed scale biweekly climate

forecasts showed that leveraging one additional known

source of climate system predictability, SSTs, in post-

processing precipitation and temperature could lead to

limited to moderate improvements in many watersheds.

In some cases, postprocessing contributed large enough

skill increases to produce usable forecasts where the raw

forecasts fell below this threshold. Yet in the application

shown here, postprocessing also did not performwell for

many and even a majority of watersheds for some pre-

dictands. It is possible that alternative postprocessing

FIG. 7. Forecast results for weeks 3–4 precipitation forecasts shown on a seasonal basis. The format is the same as Fig. 4.
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techniques or input climate datasets (such as reanalyses)

would improve performance, but there may also be

precipitation and temperature variability in certain wa-

tersheds that is not systematically forced by identifiable

or predictable circulation patterns.

The shortcomings of using a prescribed, linear

approach across CONUS watersheds revealed the

potential value of investigating further a more data-

driven postprocessing application to avoid forecast

skill degradation where sampling uncertainty and

variations in harnessable predictability lead to over-

fitting. A one-size-fits-all approach likely excludes

additional, potentially usable predictability that may

be harnessable through a consideration of dominant

regional S2S climate dynamics and more expansive

utilization of additional, relevant predictors (either

from reanalyses, not considered here, or climate

forecast models).

Another caveat to consider in interpreting the study

results is that, through unintended oversight, we did not

first normalize precipitation predictors before using

them in PLSR, thus their distributions did not satisfy the

inherent assumption that the predictors and predictands

are Gaussian. Though temperature exhibits a Gaussian

distribution formost watersheds, raw precipitation is not

normally distributed. The time-averaging of precipita-

tion (to 2-week periods) does reduce the distributional

problems associated with intermittency, and improves

normality, but not sufficiently. To render precipita-

tion into Gaussian space, one can apply statistical

transformations such as lognormal, power-law (e.g.,

square root), Box–Cox (Box and Cox 1964), or log-

sinh (Wang et al. 2012), which are typically applied in

precipitation and streamflow forecasting (e.g., Strazzo

et al. 2019).

This study was scoped to offer a demonstration of

concept rather than a comprehensive assessment of

postprocessing techniques and dataset opportunities.

Further research could home in on specific predictors for

subseasonal climate forecasts, test different predictor

domains for specific watersheds, use different lagged or

pooled ensembles to reduce noise in raw forecasts, re-

gionalize predictors within the CONUS domain, use

newer reforecasting datasets than CFSv2, and longer

training periods. The postprocessing method we se-

lected, PLSR, may be limited relative to newer ma-

chine learning methods that can represent nonlinear

and thresholded relationships between variables (Jones

2017), a speculation that can be confirmed if comparative

or benchmarking analyses across a range of techniques

are performed in the future.

Our focus on the skill of current operational sub-

seasonal climate forecasts on a watershed scale is

intended to familiarize potential stakeholders with their

raw performance as well as provide an indication of the

potential for postprocessing to enhance this performance.

FIG. 8. Visual analysis of predictor performance for forecasts of July weeks 2–3 precipitation. Shown are (a) raw

CFSv2 ACC, (b) increases in ACC from raw CFSv2 to PLSR with best predictor, (c) maximum ACC from either

the raw CFSv2 or PLSR forecasts resulting in an increase in ACC, and (d) predictor corresponding to the increases

in ACC from those shown in (b) and (c). The predictor variables are summarized in Table 1. The gray watersheds

did not show improvements in ACC from any predictor using PLSR.
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To this end, Baker et al. (2019) earlier presented a real-

time demonstration of climate forecasts related to those

described here on an operational S2S Climate Outlooks for

Watersheds web-based platform. Improvements to climate

forecasts on such scales may help water managers im-

prove decisions regarding reservoir operations, water

allocation, flood control, hydropower generation, water

treatment, and in-stream supported releases (Bolson

et al. 2013). To wit, a number of studies have shown how

S2S climate forecasts can be used to improve the skill of

streamflow forecasts (e.g., Werner et al. 2004; Mendoza

et al. 2014; Crochemore et al. 2017), a key input to water

operations and management. Overall, we recommend

an emphasis on postprocessing techniques as part of

climate services based on operational climate forecasts

because, notwithstanding the limitations of this study, it

provided evidence of the potential benefit from the

perspective of watershed scale subseasonal climate

predictions.
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FIG. 9. Top three PLSR predictors for July week 2–3 precipitation. The watershed is colored if the mapped variable has the top three

ACC for the watershed. If the PLSR model does not have an ACC that is significantly different than the raw CFSv2 ACC or if the raw

CFSv2 forecast has a higher ACC than the PLSR model, the colored watershed is filled with a lighter shade.
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APPENDIX

Application of PLSR

This section describes further the application of the

PLSR-based postprocessing in our study, which used the

R statistical software package pls (Mevik and Wehrens

2019). The Mevik andWehrens (2019) package vignette

provides a detailed description of PLSR theory and also

provides examples of performing PLSR in R. By way of

illustration, we discuss postprocessing the weeks 3–4

precipitation forecasts for initializations in July.

As noted earlier in the main body of the paper, PLSR

involves the formation of principal components (PCs),

each of which are linear combinations of all elements of

the predictor dataset, optimized such to maximize the

predictability captured in the leading PC, followed by

maximizing the remaining predictability in subsequent

orthogonal PCs. The predictor dataset in this case is

the daily time series of gridded SST and precipitation

dataset, with the variable domain extents as shown in

Table 1. Each day’s predictor fields are an 8-member

lagged ensemble forecast mean, for each grid cell, over

the current and previous day’s forecast updates (there

are 4 per day), with values that are time averaged over

the predictand period (e.g., weeks 3–4 ahead of the

current day). The observational predictand is a time

series of an individual watershed’s climate values—in

this example, the precipitation for the weeks 3–4 period

from the current day.

For use in pls, the training dataset is organized in a

largematrix in which the columns are individual grid cell

values from the predictor fields and rows represent each

record in the time series from the training period (e.g.,

1 June 1990, 2 June 1990, . . . , 30 August 2009), when

developing a model to predict during 1–31 July 2010.

The predictand’s training data are a matrix with a single

column of observed weeks 3–4 precipitation for an in-

dividual watershed with rows matching the same dates

as the predictor matrix. Both predictor and predictand

datasets are standardized before calling the pls method.

The pls method has an internal cross-validation mode

that was not used in this study out of an interest in ex-

plicitly controlling the separation of training and test

datasets, and allowing for broader assessment of training

and test dataset characteristics than would be available

through using the internal functionality.

We train PLSR forecasts independently for each

month of the year, and to increase the sample size of the

training, we pool forecasts for the 3-month season cen-

tered on the month of interest. In this example, we train

the PLSRmodel for July precipitation on June, July, and

August datasets. We cross validate the entire process by

dropping a year from the training dataset, leaving

11 years, and verifying on the excluded year. The per-

formance of the forecasts is averaged across all results

from all of the excluded years.
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